Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

George Ferguson,* Alan J. McAlees and Robert McCrindle

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Correspondence e-mail:
george@angus.chembio.uoguelph.ca

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.061$
$w R$ factor $=0.220$
Data-to-parameter ratio $=10.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

N,N-Dimethyl-5-dimethylamino-3-(1-pyrrolyl)-2,4pentadieniminium tetrafluoroborate

In the crystal structure of the title salt, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{BF}_{4}{ }^{-}$, the asymmetric unit has two independent cations and anions. The cations have similar markedly non-planar pentamethinecyanine moieties with a trans-cis-cis-trans conformation of the pentamethinecyanine $\mathrm{NC}_{5} \mathrm{~N}$ chain. The pyrrole substituents are rotated 21.14 (9) and $23.43(19)^{\circ}$ from planarity with the adjacent atoms in the pentamethinecyanine chains.

Comment

The title salt, (1), containing the relatively electron-rich 1-pyrrolyl substituent was prepared in order to determine what effect the 1-pyrrolyl substitution would have on the conformation of the pentamethinecyanine moiety of the cation.

Received 12 February 2001 Accepted 14 February 2001 Online 28 February 2001

(1)

(2)

(3)

(4)

(5)

There are two independent cations and anions in the asymmetric unit of (1) with each of the anions disordered over two sites. The pentamethinecyanine moieties in the cations (Figs. 1 and 2) have similar, markedly non-planar, trans-cis-cis-trans conformations, with torsion angles Cn1-Cn2$\mathrm{Cn} 3-\mathrm{C} n 4$ and $\mathrm{C} n 2-\mathrm{C} n 3-\mathrm{C} n 4-\mathrm{Cn5}$ having values -22.8 (6), -30.7 (6), and -27.2 (6) and -26.4 (6) ${ }^{\circ}$ for $n=1$ and 2 , respectively. It is interesting to compare these conformations with those found for the pentamethinecyanine moieties in 5-dimethylamino- N, N-dimethyl-3-(4-pyridyl)-2,4pentadieniminium tetrafluorobate [(2); all-trans; Ferguson et al., 2001] and in tris(2-dimethylaminoethenyl)methylium per-
chlorate [(3); trans-trans-cis-trans; Dale et al., 1988]. In (2), the relatively electron-poor 4-pyridyl substitutent is not conjugated with the pentamethinecyanine, and these two moieties form a dihedral angle of 60.58 (9). In (3), which may be regarded as a pentamethinecyanine carrying an electronrich 2-dimethylaminoethenyl substituent at the central carbon, conjugative interaction results in a change in the conformation of the pentamethincyanine moiety in order to avoid a potentially severe steric interaction between $\mathrm{C} 1-\mathrm{H}($ or $\mathrm{C} 5-\mathrm{H})$ and $\mathrm{C} 2-\mathrm{H}$ of the 2-dimethylaminoethenyl substituent. In addition, the cation in (3), which has a threefold symmetry axis, is not planar but adopts a twisted-propeller shape.

In spite of their different conformations, bond lengths within the pentamethinecyanine moiety of (1) do not differ significantly from those reported for the all-trans pentamethinecyanine moieties in the simple parent salt (4) (Honda et al., 1986) and the 3-(4-pyridyl) derivative (2) (Ferguson et al., 2001). The bond lengths within the 1-pyrrolyl substituent of (1) are very similar to those reported (Ferguson \& McAlees, 1990) for the 1-pyrrolyl fragment in the pyridinium salt (5), consistent with direct conjugation between the relatively electron-rich 1-pyrrolyl substituent and the electron-poor pentamethinecyanine and pyridinium moieties in (1) and (5), respectively. Such conjugation is also suggested by the relatively short bond between the pyrrole and pentamethinecyanine moieties [C13-N13 1.399 (5) \AA and $\mathrm{C} 23-\mathrm{N} 23$ 1.409 (5) Å]. With the pentamethinecyanine chain in the alltrans conformation, coplanarity with the pyrrole would result in severe steric interactions between the pyrrole α - H atoms and $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 5-\mathrm{H}$. These and other interactions are avoided in (1) by adoption of the trans-cis-cis-trans conformation along with out-of-plane twisting as found for (3) (Dale et al., 1988).

Figure 1
View of one of the two independent cations of (1) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Views of the second of the two independent cations of (1) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

A solution of dimethylamine $(0.98 \mathrm{~g}, 22 \mathrm{mmol})$ in ethanol $(7 \mathrm{ml})$ was added to a suspension of N-(2,4-dinitrophenyl)-4-(1-pyrrolyl)pyridinium chloride [(5); $3.47 \mathrm{~g}, 10.0 \mathrm{mmol}$; Ferguson \& McAlees, 1990] in ethanol $(20 \mathrm{ml})$ and the mixture was stirred at ambient temperature for 16 h . The resulting mixture was filtered, and the collected green-yellow powder (2,4-dinitroaniline) was washed with ethanol $(3 \times 10 \mathrm{ml})$. The combined filtrate and washings were evaporated in vacuo to leave a clear orange gum which was taken up in water $(50 \mathrm{ml})$ and filtered to remove yellow insoluble material. The aqueous filtrate was then washed with chloroform $(3 \times 25 \mathrm{ml})$ and treated with an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{NaBF}_{4}(1.2 \mathrm{~g}, 11.0 \mathrm{mmol})$. The resulting mixture was extracted with dichloromethane $(3 \times$ $30 \mathrm{ml})$, the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated to leave an orange-red gum. Crystallization from ethanol gave yellow hexagonal plates of (1) ($2.32 \mathrm{~g}, 76 \%$ yield; m.p. 397.5-398.5 K).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{BF}_{4}{ }^{-}$
$M_{r}=305.13$
Monoclinic, $P 2_{1} / c$
$a=14.882(3) \AA$
$b=10.366$ (2) A
$c=24.064$ (3) \AA
$\beta=121.987(11)^{\circ}$
$V=3148.7(10) \AA^{3}$
$Z=8$
$D_{x}=1.287 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.4-12.8^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (1) K
Plate, yellow
$0.43 \times 0.43 \times 0.30 \mathrm{~mm}$

Data collection

Nonius CAD-4 diffractometer
$\theta-2 \theta$ scans
5728 measured reflections
4505 independent reflections
2271 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.220$
$S=1.09$
4505 reflections
414 parameters
H -atom parameters constrained

$$
\begin{aligned}
& h=-17 \rightarrow 15 \\
& k=0 \rightarrow 9 \\
& l=0 \rightarrow 28 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: } 1.0 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1129 P)^{2}\right. \\
& \quad+0.6033 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.45 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97} \\
& \text { Extinction coefficient: } 0.0060(12)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

N11-C11	$1.310(5)$	N21-C21	$1.310(5)$
N11-C16	$1.447(5)$	N21-C26	$1.452(6)$
N11-C17	$1.444(6)$	N21-C27	$1.444(6)$
N12-C15	$1.308(5)$	N22-C25	$1.316(5)$
N12-C18	$1.455(5)$	N22-C28	$1.462(5)$
N12-C19	$1.454(6)$	N22-C29	$1.461(5)$
N13-C13	$1.399(5)$	N23-C23	$1.409(5)$
N13-C110	$1.390(5)$	N23-C210	$1.387(5)$
N13-C113	$1.390(5)$	N23-C213	$1.368(5)$
C11-C12	$1.387(6)$	C21-C22	$1.381(5)$
C12-C13	$1.389(6)$	C22-C23	$1.389(5)$
C13-C14	$1.396(5)$	C23-C24	$1.387(6)$
C14-C15	$1.374(5)$	C24-C25	$1.383(5)$
C110-C111	$1.345(6)$	C210-C211	$1.343(6)$
C111-C112	$1.417(7)$	C211-C212	$1.406(7)$
C112-C113	$1.330(6)$	C212-C213	$1.359(6)$
N11-C11-C12-C13	$174.6(4)$	N21-C21-C22-C23	$171.4(4)$
C11-C12-C13-C14	$-22.8(6)$	C21-C22-C23-C24	$-27.2(6)$
C12-C13-C14-C15	$-30.7(6)$	C22-C23-C24-C25	$-26.4(6)$
C13-C14-C15-N12	$-179.3(4)$	C23-C24-C25-N22	$175.6(4)$

Compound (1) crystallized in the monoclinic system; space group $P 2_{1} / c$ from the systematic absences. H atoms were treated as riding atoms with $\mathrm{C}-\mathrm{H} 0.93$ and $0.96 \AA$. Difference maps showed that methyl H atoms at C17, C19 and C29 were disordered and they were modelled using six H sites, each with occupancy 0.50 , mutually offset by 60°. The H atoms of the other methyl groups were modelled with free rotation about the relevant $\mathrm{C}-\mathrm{C}$ bond. It was also apparent that the F atoms of the $\mathrm{BF}_{4}{ }^{-}$ions were disordered over major and minor occupancy sites with common B atoms. The geometry of these tetrahedral BF_{4}^{-}anions was restrained to be near to tetrahedral by use of DFIX commands with an overall restrained $\mathrm{B}-\mathrm{F}$ distance. The minor occupancy F atoms were allowed for with overall isotropic displacement parameters.

Data collection: CAD-4-PC Software (Nonius, 1992); cell refinement: SET4 and CELDIM (Nonius, 1992); data reduction: HELENA in PLATON (Spek, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON; software used to prepare material for publication: SHELXL97 and WordPerfect macro PREP8 (Ferguson, 1998).

References

Dale, J., Eriksen, O. I. \& Groth, P. (1988). Acta Chem. Scand. Ser. B, 42, 573582.

Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Ferguson, G., Jennings, M. C., McAlees, A. J. \& McCrindle, R. (2001). Acta Cryst. E57, o202-204.
Ferguson, G. \& McAlees, A. J. (1990). Acta Cryst. C46, 1241-1244.
Honda, M., Katayama, C. \& Tanaka, J. (1986). Acta Cryst. B42, 90-95.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nonius (1992). CAD-4-PC Software. Version 1.1. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. January 2001 Vrsion. University of Utrecht, The Netherlands.

